{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"indic = pd.read_csv('https://data.orleans-metropole.fr/explore/dataset/donnees-calcul-indicateur-fragilite-numerique-orleans-metropole/download/?format=csv&timezone=Europe/Berlin&lang=fr&use_labels_for_header=true&csv_separator=%3B', delimiter = ';')\n",
"pd.set_option('display.max_columns', None) "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" cantville | \n",
" depcom | \n",
" LIBCOM | \n",
" iris | \n",
" LIB_IRIS | \n",
" geom | \n",
" centroid | \n",
" POPLEG | \n",
" NB15_29 | \n",
" NB65+ | \n",
" NBMONOFAM | \n",
" NBMEN1P | \n",
" NBCHOM15_64 | \n",
" NB15NSCONDIPL | \n",
" NBIMMI | \n",
" NBMENTOT | \n",
" PartNBMONOFAM | \n",
" PartNB15_29 | \n",
" PartNB65+ | \n",
" PartNBIMMI | \n",
" PartNBMEN1P | \n",
" PartNBCHOM15_64 | \n",
" PartNB15NSCONDIPL | \n",
" PERCOU | \n",
" NBequip | \n",
" Medrev | \n",
" Tx_pauvre | \n",
" couverture_mobile | \n",
" Taux logements raccordables | \n",
" couverture_mobilebis | \n",
" Taux logements raccordablesbis | \n",
" NBequipbis | \n",
" PERCOUbis | \n",
" POPCOM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 4506 | \n",
" 45147 | \n",
" Fleury-les-Aubrais | \n",
" 451470201 | \n",
" Ormes du Mail-Andrillons | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[1.910813... | \n",
" 47.936786715,1.913287154 | \n",
" 1159 | \n",
" 189 | \n",
" 105 | \n",
" 293.0 | \n",
" 164 | \n",
" 169 | \n",
" 259 | \n",
" 360 | \n",
" 480 | \n",
" 0.252804 | \n",
" 0.163072 | \n",
" 0.090595 | \n",
" 0.310613 | \n",
" 0.141501 | \n",
" 0.145815 | \n",
" 0.223469 | \n",
" 1753.000000 | \n",
" 2.184615 | \n",
" 19570.0 | \n",
" 20.00000 | \n",
" 23.000000 | \n",
" 1.000000 | \n",
" 23.0 | \n",
" 1.000000 | \n",
" 0.0 | \n",
" 1753.0 | \n",
" 8275 | \n",
"
\n",
" \n",
" 1 | \n",
" 4506 | \n",
" 45147 | \n",
" Fleury-les-Aubrais | \n",
" 451470401 | \n",
" Gare | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[1.910813... | \n",
" 47.930713007,1.903882118 | \n",
" 1964 | \n",
" 321 | \n",
" 347 | \n",
" 147.0 | \n",
" 407 | \n",
" 128 | \n",
" 343 | \n",
" 183 | \n",
" 959 | \n",
" 0.074847 | \n",
" 0.163442 | \n",
" 0.176680 | \n",
" 0.093177 | \n",
" 0.207230 | \n",
" 0.065173 | \n",
" 0.174644 | \n",
" 2222.000000 | \n",
" 2.184615 | \n",
" 19570.0 | \n",
" 20.00000 | \n",
" 23.000000 | \n",
" 1.000000 | \n",
" 23.0 | \n",
" 1.000000 | \n",
" 0.0 | \n",
" 2222.0 | \n",
" 8275 | \n",
"
\n",
" \n",
" 2 | \n",
" 4506 | \n",
" 45147 | \n",
" Fleury-les-Aubrais | \n",
" 451470301 | \n",
" Mairie | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[1.916218... | \n",
" 47.932491481,1.922177216 | \n",
" 700 | \n",
" 104 | \n",
" 196 | \n",
" 71.0 | \n",
" 153 | \n",
" 42 | \n",
" 135 | \n",
" 88 | \n",
" 350 | \n",
" 0.101429 | \n",
" 0.148571 | \n",
" 0.280000 | \n",
" 0.125714 | \n",
" 0.218571 | \n",
" 0.060000 | \n",
" 0.192857 | \n",
" 781.000000 | \n",
" 1.000000 | \n",
" 19570.0 | \n",
" 20.00000 | \n",
" 23.000000 | \n",
" 1.000000 | \n",
" 23.0 | \n",
" 1.000000 | \n",
" 1.0 | \n",
" 781.0 | \n",
" 8275 | \n",
"
\n",
" \n",
" 3 | \n",
" 4506 | \n",
" 45147 | \n",
" Fleury-les-Aubrais | \n",
" 451470402 | \n",
" Clos De La Grande Salle | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[1.909067... | \n",
" 47.931948996,1.909870169 | \n",
" 1041 | \n",
" 219 | \n",
" 107 | \n",
" 209.0 | \n",
" 148 | \n",
" 122 | \n",
" 234 | \n",
" 242 | \n",
" 427 | \n",
" 0.200768 | \n",
" 0.210375 | \n",
" 0.102786 | \n",
" 0.232469 | \n",
" 0.142171 | \n",
" 0.117195 | \n",
" 0.224784 | \n",
" 1700.000000 | \n",
" 1.000000 | \n",
" 19570.0 | \n",
" 20.00000 | \n",
" 23.000000 | \n",
" 1.000000 | \n",
" 23.0 | \n",
" 1.000000 | \n",
" 1.0 | \n",
" 1700.0 | \n",
" 8275 | \n",
"
\n",
" \n",
" 4 | \n",
" 4506 | \n",
" 45147 | \n",
" Fleury-les-Aubrais | \n",
" 451470101 | \n",
" Escures | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[1.951294... | \n",
" 47.950798126,1.927870312 | \n",
" 70 | \n",
" 15 | \n",
" 11 | \n",
" 3.0 | \n",
" 7 | \n",
" 2 | \n",
" 27 | \n",
" 2 | \n",
" 13 | \n",
" 0.042857 | \n",
" 0.214286 | \n",
" 0.157143 | \n",
" 0.028571 | \n",
" 0.100000 | \n",
" 0.028571 | \n",
" 0.385714 | \n",
" 173.000000 | \n",
" 2.184615 | \n",
" 19570.0 | \n",
" 20.00000 | \n",
" 23.000000 | \n",
" 1.000000 | \n",
" 23.0 | \n",
" 1.000000 | \n",
" 0.0 | \n",
" 173.0 | \n",
" 8275 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 106 | \n",
" 4518 | \n",
" 45089 | \n",
" Chécy | \n",
" 450890103 | \n",
" Ouest | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[2.006123... | \n",
" 47.901178887,2.010764271 | \n",
" 853 | \n",
" 116 | \n",
" 132 | \n",
" 94.0 | \n",
" 66 | \n",
" 51 | \n",
" 100 | \n",
" 58 | \n",
" 325 | \n",
" 0.110199 | \n",
" 0.135991 | \n",
" 0.154748 | \n",
" 0.067995 | \n",
" 0.077374 | \n",
" 0.059789 | \n",
" 0.117233 | \n",
" 1390.192771 | \n",
" 2.184615 | \n",
" 24190.0 | \n",
" 6.00000 | \n",
" 8.000000 | \n",
" 1.000000 | \n",
" 8.0 | \n",
" 1.000000 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 1726 | \n",
"
\n",
" \n",
" 107 | \n",
" 4505 | \n",
" 45272 | \n",
" Saint-Cyr-en-Val | \n",
" 452720000 | \n",
" Saint-Cyr-en-Val (commune non irisée) | \n",
" {\"type\": \"MultiPolygon\", \"coordinates\": [[[[1.... | \n",
" 47.814310536,1.959794793 | \n",
" 3458 | \n",
" 458 | \n",
" 691 | \n",
" 262.0 | \n",
" 396 | \n",
" 141 | \n",
" 626 | \n",
" 139 | \n",
" 1456 | \n",
" 0.075766 | \n",
" 0.132447 | \n",
" 0.199826 | \n",
" 0.040197 | \n",
" 0.114517 | \n",
" 0.040775 | \n",
" 0.181029 | \n",
" 1390.192771 | \n",
" 5.000000 | \n",
" 26440.0 | \n",
" 16.37037 | \n",
" 8.000000 | \n",
" 0.957474 | \n",
" 8.0 | \n",
" 0.957474 | \n",
" 5.0 | \n",
" 0.0 | \n",
" 3458 | \n",
"
\n",
" \n",
" 108 | \n",
" 4506 | \n",
" 45197 | \n",
" Marigny-les-Usages | \n",
" 451970000 | \n",
" Marigny-les-Usages (commune non irisée) | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[2.041819... | \n",
" 47.958746605,2.013526751 | \n",
" 2431 | \n",
" 345 | \n",
" 322 | \n",
" 177.0 | \n",
" 171 | \n",
" 93 | \n",
" 323 | \n",
" 79 | \n",
" 925 | \n",
" 0.072810 | \n",
" 0.141917 | \n",
" 0.132456 | \n",
" 0.032497 | \n",
" 0.070341 | \n",
" 0.038256 | \n",
" 0.132867 | \n",
" 1390.192771 | \n",
" 2.000000 | \n",
" 25150.0 | \n",
" 16.37037 | \n",
" 42.834862 | \n",
" 1.000000 | \n",
" 0.0 | \n",
" 1.000000 | \n",
" 2.0 | \n",
" 0.0 | \n",
" 2431 | \n",
"
\n",
" \n",
" 109 | \n",
" 4512 | \n",
" 45282 | \n",
" Saint-Hilaire-Saint-Mesmin | \n",
" 452820000 | \n",
" Saint-Hilaire-Saint-Mesmin (commune non irisée) | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[1.860935... | \n",
" 47.849857494,1.833923695 | \n",
" 615 | \n",
" 65 | \n",
" 112 | \n",
" 49.0 | \n",
" 68 | \n",
" 18 | \n",
" 91 | \n",
" 32 | \n",
" 259 | \n",
" 0.079675 | \n",
" 0.105691 | \n",
" 0.182114 | \n",
" 0.052033 | \n",
" 0.110569 | \n",
" 0.029268 | \n",
" 0.147967 | \n",
" 1390.192771 | \n",
" 2.000000 | \n",
" 26360.0 | \n",
" 16.37037 | \n",
" 1.000000 | \n",
" 0.664460 | \n",
" 1.0 | \n",
" 0.664460 | \n",
" 2.0 | \n",
" 0.0 | \n",
" 615 | \n",
"
\n",
" \n",
" 110 | \n",
" 4518 | \n",
" 45308 | \n",
" Semoy | \n",
" 453080000 | \n",
" Semoy (commune non irisée) | \n",
" {\"type\": \"Polygon\", \"coordinates\": [[[1.943500... | \n",
" 47.93787436,1.963016093 | \n",
" 1910 | \n",
" 272 | \n",
" 300 | \n",
" 178.0 | \n",
" 161 | \n",
" 71 | \n",
" 298 | \n",
" 128 | \n",
" 764 | \n",
" 0.093194 | \n",
" 0.142408 | \n",
" 0.157068 | \n",
" 0.067016 | \n",
" 0.084293 | \n",
" 0.037173 | \n",
" 0.156021 | \n",
" 1390.192771 | \n",
" 3.000000 | \n",
" 24940.0 | \n",
" 6.00000 | \n",
" 42.834862 | \n",
" 0.847573 | \n",
" 0.0 | \n",
" 0.847573 | \n",
" 3.0 | \n",
" 0.0 | \n",
" 1910 | \n",
"
\n",
" \n",
"
\n",
"
111 rows × 34 columns
\n",
"
"
],
"text/plain": [
" cantville depcom LIBCOM iris \\\n",
"0 4506 45147 Fleury-les-Aubrais 451470201 \n",
"1 4506 45147 Fleury-les-Aubrais 451470401 \n",
"2 4506 45147 Fleury-les-Aubrais 451470301 \n",
"3 4506 45147 Fleury-les-Aubrais 451470402 \n",
"4 4506 45147 Fleury-les-Aubrais 451470101 \n",
".. ... ... ... ... \n",
"106 4518 45089 Chécy 450890103 \n",
"107 4505 45272 Saint-Cyr-en-Val 452720000 \n",
"108 4506 45197 Marigny-les-Usages 451970000 \n",
"109 4512 45282 Saint-Hilaire-Saint-Mesmin 452820000 \n",
"110 4518 45308 Semoy 453080000 \n",
"\n",
" LIB_IRIS \\\n",
"0 Ormes du Mail-Andrillons \n",
"1 Gare \n",
"2 Mairie \n",
"3 Clos De La Grande Salle \n",
"4 Escures \n",
".. ... \n",
"106 Ouest \n",
"107 Saint-Cyr-en-Val (commune non irisée) \n",
"108 Marigny-les-Usages (commune non irisée) \n",
"109 Saint-Hilaire-Saint-Mesmin (commune non irisée) \n",
"110 Semoy (commune non irisée) \n",
"\n",
" geom \\\n",
"0 {\"type\": \"Polygon\", \"coordinates\": [[[1.910813... \n",
"1 {\"type\": \"Polygon\", \"coordinates\": [[[1.910813... \n",
"2 {\"type\": \"Polygon\", \"coordinates\": [[[1.916218... \n",
"3 {\"type\": \"Polygon\", \"coordinates\": [[[1.909067... \n",
"4 {\"type\": \"Polygon\", \"coordinates\": [[[1.951294... \n",
".. ... \n",
"106 {\"type\": \"Polygon\", \"coordinates\": [[[2.006123... \n",
"107 {\"type\": \"MultiPolygon\", \"coordinates\": [[[[1.... \n",
"108 {\"type\": \"Polygon\", \"coordinates\": [[[2.041819... \n",
"109 {\"type\": \"Polygon\", \"coordinates\": [[[1.860935... \n",
"110 {\"type\": \"Polygon\", \"coordinates\": [[[1.943500... \n",
"\n",
" centroid POPLEG NB15_29 NB65+ NBMONOFAM NBMEN1P \\\n",
"0 47.936786715,1.913287154 1159 189 105 293.0 164 \n",
"1 47.930713007,1.903882118 1964 321 347 147.0 407 \n",
"2 47.932491481,1.922177216 700 104 196 71.0 153 \n",
"3 47.931948996,1.909870169 1041 219 107 209.0 148 \n",
"4 47.950798126,1.927870312 70 15 11 3.0 7 \n",
".. ... ... ... ... ... ... \n",
"106 47.901178887,2.010764271 853 116 132 94.0 66 \n",
"107 47.814310536,1.959794793 3458 458 691 262.0 396 \n",
"108 47.958746605,2.013526751 2431 345 322 177.0 171 \n",
"109 47.849857494,1.833923695 615 65 112 49.0 68 \n",
"110 47.93787436,1.963016093 1910 272 300 178.0 161 \n",
"\n",
" NBCHOM15_64 NB15NSCONDIPL NBIMMI NBMENTOT PartNBMONOFAM PartNB15_29 \\\n",
"0 169 259 360 480 0.252804 0.163072 \n",
"1 128 343 183 959 0.074847 0.163442 \n",
"2 42 135 88 350 0.101429 0.148571 \n",
"3 122 234 242 427 0.200768 0.210375 \n",
"4 2 27 2 13 0.042857 0.214286 \n",
".. ... ... ... ... ... ... \n",
"106 51 100 58 325 0.110199 0.135991 \n",
"107 141 626 139 1456 0.075766 0.132447 \n",
"108 93 323 79 925 0.072810 0.141917 \n",
"109 18 91 32 259 0.079675 0.105691 \n",
"110 71 298 128 764 0.093194 0.142408 \n",
"\n",
" PartNB65+ PartNBIMMI PartNBMEN1P PartNBCHOM15_64 PartNB15NSCONDIPL \\\n",
"0 0.090595 0.310613 0.141501 0.145815 0.223469 \n",
"1 0.176680 0.093177 0.207230 0.065173 0.174644 \n",
"2 0.280000 0.125714 0.218571 0.060000 0.192857 \n",
"3 0.102786 0.232469 0.142171 0.117195 0.224784 \n",
"4 0.157143 0.028571 0.100000 0.028571 0.385714 \n",
".. ... ... ... ... ... \n",
"106 0.154748 0.067995 0.077374 0.059789 0.117233 \n",
"107 0.199826 0.040197 0.114517 0.040775 0.181029 \n",
"108 0.132456 0.032497 0.070341 0.038256 0.132867 \n",
"109 0.182114 0.052033 0.110569 0.029268 0.147967 \n",
"110 0.157068 0.067016 0.084293 0.037173 0.156021 \n",
"\n",
" PERCOU NBequip Medrev Tx_pauvre couverture_mobile \\\n",
"0 1753.000000 2.184615 19570.0 20.00000 23.000000 \n",
"1 2222.000000 2.184615 19570.0 20.00000 23.000000 \n",
"2 781.000000 1.000000 19570.0 20.00000 23.000000 \n",
"3 1700.000000 1.000000 19570.0 20.00000 23.000000 \n",
"4 173.000000 2.184615 19570.0 20.00000 23.000000 \n",
".. ... ... ... ... ... \n",
"106 1390.192771 2.184615 24190.0 6.00000 8.000000 \n",
"107 1390.192771 5.000000 26440.0 16.37037 8.000000 \n",
"108 1390.192771 2.000000 25150.0 16.37037 42.834862 \n",
"109 1390.192771 2.000000 26360.0 16.37037 1.000000 \n",
"110 1390.192771 3.000000 24940.0 6.00000 42.834862 \n",
"\n",
" Taux logements raccordables couverture_mobilebis \\\n",
"0 1.000000 23.0 \n",
"1 1.000000 23.0 \n",
"2 1.000000 23.0 \n",
"3 1.000000 23.0 \n",
"4 1.000000 23.0 \n",
".. ... ... \n",
"106 1.000000 8.0 \n",
"107 0.957474 8.0 \n",
"108 1.000000 0.0 \n",
"109 0.664460 1.0 \n",
"110 0.847573 0.0 \n",
"\n",
" Taux logements raccordablesbis NBequipbis PERCOUbis POPCOM \n",
"0 1.000000 0.0 1753.0 8275 \n",
"1 1.000000 0.0 2222.0 8275 \n",
"2 1.000000 1.0 781.0 8275 \n",
"3 1.000000 1.0 1700.0 8275 \n",
"4 1.000000 0.0 173.0 8275 \n",
".. ... ... ... ... \n",
"106 1.000000 0.0 0.0 1726 \n",
"107 0.957474 5.0 0.0 3458 \n",
"108 1.000000 2.0 0.0 2431 \n",
"109 0.664460 2.0 0.0 615 \n",
"110 0.847573 3.0 0.0 1910 \n",
"\n",
"[111 rows x 34 columns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"indic"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"indic = indic.rename(columns={\"Nombre d'antennes\":\"couverture_mobile\", 'Tx pauvreté':'Tx_pauvre','Logements raccordables / commune':'Taux logements raccordables'})"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['cantville', 'depcom', 'LIBCOM', 'iris', 'LIB_IRIS', 'geom', 'centroid',\n",
" 'POPLEG', 'NB15_29', 'NB65+', 'NBMONOFAM', 'NBMEN1P', 'NBCHOM15_64',\n",
" 'NB15NSCONDIPL', 'NBIMMI', 'NBMENTOT', 'PartNBMONOFAM', 'PartNB15_29',\n",
" 'PartNB65+', 'PartNBIMMI', 'PartNBMEN1P', 'PartNBCHOM15_64',\n",
" 'PartNB15NSCONDIPL', 'PERCOU', 'NBequip', 'Medrev', 'Tx_pauvre',\n",
" 'couverture_mobile', 'Taux logements raccordables'],\n",
" dtype='object')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"indic.columns"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"#Pour les équipements (antennes, services publics, fibres), les NaN sont remplacés par 0 car on estime que si la valeur est manquante, c'est qu'il n'y a pas d'équipement à cet endroit\n",
"indic_na_zero = indic[[\"couverture_mobile\",'Taux logements raccordables','NBequip', 'PERCOU']]\n",
"for l in indic_na_zero:\n",
" newcol = l + 'bis'\n",
" indic[newcol] = indic[l].fillna(0)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Pour les autres variables (ex: taux de pauvreté), les valeurs manquantes sont remplacés par la moyenne des 22 communes\n",
"# cf. MEDNUM qui avait remplacé par les moyennes régionales \n",
"for i in indic.columns[indic.isnull().any(axis=0)]:\n",
" indic[i].fillna(indic[i].mean(),inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
":1: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.\n",
" popcom = indic.groupby(['depcom'])['POPLEG', 'iris'].sum()\n"
]
}
],
"source": [
"popcom = indic.groupby(['depcom'])['POPLEG', 'iris'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"popcom = popcom.drop(columns = ['iris'])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"popcom = popcom.rename(columns={'POPLEG':'POPCOM'})"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" POPCOM | \n",
"
\n",
" \n",
" depcom | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 45075 | \n",
" 2032 | \n",
"
\n",
" \n",
" 45089 | \n",
" 1726 | \n",
"
\n",
" \n",
" 45147 | \n",
" 8275 | \n",
"
\n",
" \n",
" 45169 | \n",
" 1888 | \n",
"
\n",
" \n",
" 45197 | \n",
" 2431 | \n",
"
\n",
" \n",
" 45232 | \n",
" 7965 | \n",
"
\n",
" \n",
" 45234 | \n",
" 44183 | \n",
"
\n",
" \n",
" 45235 | \n",
" 828 | \n",
"
\n",
" \n",
" 45272 | \n",
" 3458 | \n",
"
\n",
" \n",
" 45274 | \n",
" 1497 | \n",
"
\n",
" \n",
" 45282 | \n",
" 615 | \n",
"
\n",
" \n",
" 45284 | \n",
" 7813 | \n",
"
\n",
" \n",
" 45285 | \n",
" 6188 | \n",
"
\n",
" \n",
" 45286 | \n",
" 1724 | \n",
"
\n",
" \n",
" 45298 | \n",
" 1212 | \n",
"
\n",
" \n",
" 45302 | \n",
" 6297 | \n",
"
\n",
" \n",
" 45308 | \n",
" 1910 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" POPCOM\n",
"depcom \n",
"45075 2032\n",
"45089 1726\n",
"45147 8275\n",
"45169 1888\n",
"45197 2431\n",
"45232 7965\n",
"45234 44183\n",
"45235 828\n",
"45272 3458\n",
"45274 1497\n",
"45282 615\n",
"45284 7813\n",
"45285 6188\n",
"45286 1724\n",
"45298 1212\n",
"45302 6297\n",
"45308 1910"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"popcom"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"indic = indic.merge(popcom, how='inner', on='depcom')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"indic = indic.rename(columns={'POPCOM_y':'POPCOM'})"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"indic['equip_ind']= indic['NBequipbis']/indic['POPLEG']"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"indic['taux_percou'] = indic['PERCOUbis']/indic['POPCOM']"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"indic.loc[(indic.couverture_mobilebis > 0), 'couverture_mobilebis']=100"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"indic['non_couv_mobile']= 100-indic['couverture_mobilebis']"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"indic['tx_logement_non_raccordable']= 100-(indic['Taux logements raccordablesbis'])*100"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"group = indic[['depcom','Tx_pauvre','non_couv_mobile','tx_logement_non_raccordable','Medrev','taux_percou']]\n",
"com = group.groupby(['depcom']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"com = group.groupby(['depcom']).mean()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Tx_pauvre | \n",
" non_couv_mobile | \n",
" tx_logement_non_raccordable | \n",
" Medrev | \n",
" taux_percou | \n",
"
\n",
" \n",
" depcom | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 45075 | \n",
" 10.00000 | \n",
" 0.0 | \n",
" 0.000000 | \n",
" 22000.0 | \n",
" 0.615527 | \n",
"
\n",
" \n",
" 45089 | \n",
" 6.00000 | \n",
" 0.0 | \n",
" 0.000000 | \n",
" 24190.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45147 | \n",
" 20.00000 | \n",
" 0.0 | \n",
" 0.000000 | \n",
" 19570.0 | \n",
" 0.155636 | \n",
"
\n",
" \n",
" 45169 | \n",
" 9.00000 | \n",
" 0.0 | \n",
" 12.008115 | \n",
" 22930.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45197 | \n",
" 16.37037 | \n",
" 100.0 | \n",
" 0.000000 | \n",
" 25150.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45232 | \n",
" 7.00000 | \n",
" 0.0 | \n",
" 0.000000 | \n",
" 25630.0 | \n",
" 0.137811 | \n",
"
\n",
" \n",
" 45234 | \n",
" 21.00000 | \n",
" 0.0 | \n",
" 71.004468 | \n",
" 19480.0 | \n",
" 0.030674 | \n",
"
\n",
" \n",
" 45235 | \n",
" 5.00000 | \n",
" 0.0 | \n",
" 10.754839 | \n",
" 24070.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45272 | \n",
" 16.37037 | \n",
" 0.0 | \n",
" 4.252577 | \n",
" 26440.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45274 | \n",
" 6.00000 | \n",
" 0.0 | \n",
" 3.670046 | \n",
" 25810.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45282 | \n",
" 16.37037 | \n",
" 0.0 | \n",
" 33.553952 | \n",
" 26360.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45284 | \n",
" 15.00000 | \n",
" 0.0 | \n",
" 56.617369 | \n",
" 20870.0 | \n",
" 0.151485 | \n",
"
\n",
" \n",
" 45285 | \n",
" 23.00000 | \n",
" 0.0 | \n",
" 18.531110 | \n",
" 18200.0 | \n",
" 0.190550 | \n",
"
\n",
" \n",
" 45286 | \n",
" 9.00000 | \n",
" 0.0 | \n",
" 19.105673 | \n",
" 24350.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45298 | \n",
" 9.00000 | \n",
" 0.0 | \n",
" 15.080676 | \n",
" 23880.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 45302 | \n",
" 14.00000 | \n",
" 0.0 | \n",
" 12.187971 | \n",
" 21180.0 | \n",
" 0.207506 | \n",
"
\n",
" \n",
" 45308 | \n",
" 6.00000 | \n",
" 100.0 | \n",
" 15.242668 | \n",
" 24940.0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Tx_pauvre non_couv_mobile tx_logement_non_raccordable Medrev \\\n",
"depcom \n",
"45075 10.00000 0.0 0.000000 22000.0 \n",
"45089 6.00000 0.0 0.000000 24190.0 \n",
"45147 20.00000 0.0 0.000000 19570.0 \n",
"45169 9.00000 0.0 12.008115 22930.0 \n",
"45197 16.37037 100.0 0.000000 25150.0 \n",
"45232 7.00000 0.0 0.000000 25630.0 \n",
"45234 21.00000 0.0 71.004468 19480.0 \n",
"45235 5.00000 0.0 10.754839 24070.0 \n",
"45272 16.37037 0.0 4.252577 26440.0 \n",
"45274 6.00000 0.0 3.670046 25810.0 \n",
"45282 16.37037 0.0 33.553952 26360.0 \n",
"45284 15.00000 0.0 56.617369 20870.0 \n",
"45285 23.00000 0.0 18.531110 18200.0 \n",
"45286 9.00000 0.0 19.105673 24350.0 \n",
"45298 9.00000 0.0 15.080676 23880.0 \n",
"45302 14.00000 0.0 12.187971 21180.0 \n",
"45308 6.00000 100.0 15.242668 24940.0 \n",
"\n",
" taux_percou \n",
"depcom \n",
"45075 0.615527 \n",
"45089 0.000000 \n",
"45147 0.155636 \n",
"45169 0.000000 \n",
"45197 0.000000 \n",
"45232 0.137811 \n",
"45234 0.030674 \n",
"45235 0.000000 \n",
"45272 0.000000 \n",
"45274 0.000000 \n",
"45282 0.000000 \n",
"45284 0.151485 \n",
"45285 0.190550 \n",
"45286 0.000000 \n",
"45298 0.000000 \n",
"45302 0.207506 \n",
"45308 0.000000 "
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"com"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"listcol1 = ['PartNBMONOFAM', 'PartNB15_29',\n",
" 'PartNB65+', 'PartNBIMMI', 'PartNBMEN1P', 'PartNBCHOM15_64',\n",
" 'PartNB15NSCONDIPL','equip_ind']\n",
"for l in listcol1:\n",
" newcol = \"pt_\" + l \n",
" indic[newcol] = ((indic[l]-indic[l].mean())/indic[l].mean()+1)*100"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"listcol2 = ['Tx_pauvre', 'non_couv_mobile',\n",
" 'tx_logement_non_raccordable','taux_percou']\n",
"for l in listcol2:\n",
" newcol = \"pt_\" + l \n",
" indic[newcol] = ((indic[l]-com[l].mean())/com[l].mean()+1)*100"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"16.000556696888367"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"com['tx_logement_non_raccordable'].mean()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"#Revenu médian sur Orléans métropole: 21420 euros\n",
"m = 21420\n",
"indic['pt_Medrev'] = ((m-indic['Medrev'])/m+1)*100"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['cantville', 'depcom', 'LIBCOM', 'iris', 'LIB_IRIS', 'geom', 'centroid',\n",
" 'POPLEG', 'NB15_29', 'NB65+', 'NBMONOFAM', 'NBMEN1P', 'NBCHOM15_64',\n",
" 'NB15NSCONDIPL', 'NBIMMI', 'NBMENTOT', 'PartNBMONOFAM', 'PartNB15_29',\n",
" 'PartNB65+', 'PartNBIMMI', 'PartNBMEN1P', 'PartNBCHOM15_64',\n",
" 'PartNB15NSCONDIPL', 'PERCOU', 'NBequip', 'Medrev', 'Tx_pauvre',\n",
" 'couverture_mobile', 'Taux logements raccordables',\n",
" 'couverture_mobilebis', 'Taux logements raccordablesbis', 'NBequipbis',\n",
" 'PERCOUbis', 'POPCOM', 'equip_ind', 'taux_percou', 'non_couv_mobile',\n",
" 'tx_logement_non_raccordable', 'pt_PartNBMONOFAM', 'pt_PartNB15_29',\n",
" 'pt_PartNB65+', 'pt_PartNBIMMI', 'pt_PartNBMEN1P', 'pt_PartNBCHOM15_64',\n",
" 'pt_PartNB15NSCONDIPL', 'pt_equip_ind', 'pt_Tx_pauvre',\n",
" 'pt_non_couv_mobile', 'pt_tx_logement_non_raccordable',\n",
" 'pt_taux_percou', 'pt_Medrev'],\n",
" dtype='object')"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"indic.columns"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"indic['acces_numerique']= (indic['pt_Medrev']+indic['pt_Tx_pauvre']+indic['pt_non_couv_mobile']+indic['pt_tx_logement_non_raccordable'])*100/400\n",
"indic['acces_info']= (indic['pt_PartNBMONOFAM']+ indic['pt_PartNBMEN1P']+indic['pt_equip_ind']+indic['pt_PartNBIMMI'])*100/400\n",
"indic['competence_administrative'] = (indic['pt_PartNB15_29']+indic['pt_PartNBCHOM15_64']+indic['pt_taux_percou'])*100/300\n",
"indic['competence_numerique'] = (indic['pt_PartNB65+']+indic['pt_PartNB15NSCONDIPL'])*100/200"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"indic['acces_global'] = (indic['acces_numerique']+indic['acces_info'])*100/200\n",
"indic['competence_global'] = (indic['competence_administrative']+indic['competence_numerique'])*100/200\n",
"indic['score_global'] = (indic['acces_global']+indic['competence_global'])*100/200"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"indic_fragi = indic[['cantville','depcom','LIBCOM','iris','LIB_IRIS','geom', 'centroid','POPLEG','POPCOM','acces_numerique','acces_info','competence_administrative','acces_global','competence_global','score_global']]"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"indic_fragi.to_csv(r\"C:\\Users\\neury\\Documents\\Python\\fragilite_numerique\\sorties\\indic_fragi_scores.csv\", index = True, header=True)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"indic.to_csv (r\"C:\\Users\\neury\\Documents\\Python\\fragilite_numerique\\sorties\\indic_fragi_all_data.csv\", index = True, header=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}